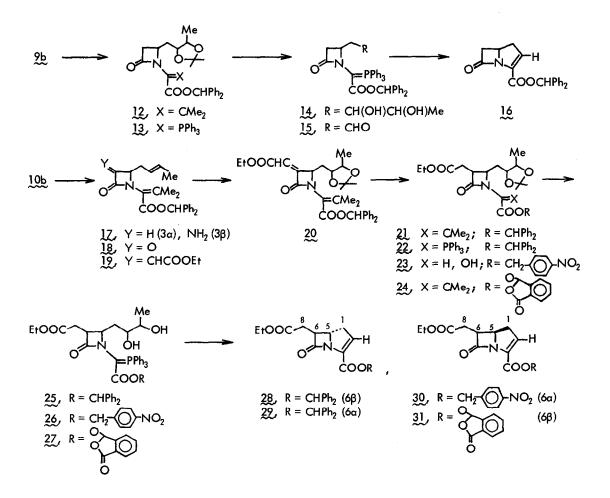
SYNTHETIC STUDIES ON β-LACTAM ANTIBIOTICS. PART 16.¹ SYNTHESIS OF 1-CARBA-2-PENEM-3-CARBOXYLIC ACID ESTERS FROM PENICILLINS UTILIZING A CARBON-CARBON COUPLING REACTION

Hiroshi Onoue, Masayuki Narisada,* Shoichiro Uyeo, Hiromu Matsumura, Kyo Okada, Toshisada Yano, and Wataru Nagata Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

Summary: Allylazetidinones 2, 10, prepared by coupling of allylcoppers 8 with chloroazetidinones 6, 7, were converted into carbapenem esters 16, 28-31 using an Emmons-Horner reaction to introduce the 6-side chain and an intramolecular Wittig reaction to form the carbapenem ring system.

Recently, interest in the β -lactam chemistry has been focused on the syntheses^{2,3} of the carbapenem ring system, the fundamental skeleton of thienamycin 1 and its analogues⁴ 2-4. In this communication, we wish to describe a synthesis of some carbapenem esters 16, 28-31 involving a new coupling reaction of allylcoppers with chloroazetidinones derived from penicillins as a key reaction.

 $\begin{array}{c} 1, \frac{4a}{5}, \frac{R^{1}}{5} = --CH(OH)CH_{3}; & R^{2} = S \\ 2, \frac{4b}{5}, \frac{R^{2}}{7} = -CH(OSO_{3}H)CH_{3}; & R^{2} = S \\ 3, \frac{4b}{5}, \frac{R^{1}}{7} = -CH(OSO_{3}H)CH_{3}; & R^{2} = S \\ 2, \frac{4b}{5}, \frac{R^{1}}{7} = -CH(OSO_{3}H)CH_{3}; & R^{2} = S \\ 3, \frac{4b}{5}, \frac{R^{1}}{7} = -CH(OSO_{3}H)CH_{3}; & R^{2} = S \\ 5, \frac{4d}{5}, \frac{R^{1}}{7} = -CH_{2}CH_{3}; & R^{2} = S \\ 5, \frac{4d}{5}, \frac{R^{1}}{7} = -CH_{2}CH_{3}; & R^{2} = S \\ \end{array}$


The chloroazetidinone 6^5 or 7^7 prepared from penicillins was allowed to react (THF, -35°C, 1-4 h then warmed to 0°C in 1 h) with allylcoppers 8a-d, prepared by mixing CuI(n-Bu₂S)₂ (ether, -76°C, N₂) with allyllithiums,⁹ giving 9b or 10a-d respectively as shown in Table I. It is noteworthy that the coupling of either isomer of 7 (4 β or 4 α) with 8d yielded a mixture of 10d with the same isomer ratio (runs 5, 6). When lithium diallylcuprates were used in place of allylcoppers, conjugated addition products 11 were formed as the major products.

Epoxidation (m-chloroperbenzoic acid, rt) of <u>9b</u> followed by hydrolysis (20% HClO₄-acetone, 0°C) and subsequent acetonidation of the resulting glycol proceeded smoothly to yield <u>12</u> (62%). Conversion of <u>12</u> into ylide <u>13</u> (70%) was performed by the method ¹⁰ developed in our laboratories

run	chiloride	allylcopper	product	yield (%)	isomer ratio ^a
1	6	<u>8b</u>	2b	55.0	-
2	4β-Ζ	8a	10a	12.4	33/67
3	4β-Ž	8b	10a 10b	66.1	45/55
4	4β-Ž	8c	10c	64.0	55/45
5	4β-Ζ	<u>8d</u>	10d	63.6	33/67
6	4α-Ž	8d	10d	48.2	33/67

^a The ratio of 4β - to 4α -isomers was determined by nmr.

The acetonide group of 13 was deprotected by exposure to 2 N HCl in ethanol (rt, 16 h) to give 14. Glycol fission (HIO₄, H₂O-THF, rt, 0.5 h) of the latter gave aldehyde 15, which on neutralization (aq NaHCO₃-AcOEt) spontaneously cyclized, giving carbapenem ester 16^{11} (51%).

Considering that introduction of some two carbon moiety at C_6 might affect antibacterial activity, we have undertaken synthesis of C_6 -ethoxycarbonylmethylcarbapenems. The mixture of 4 β - and 4 α -10b was detritylated (p-TsOH·H₂O, acetone) and the desired product 4 β -17 (31%) was separated by silica gel chromatography from 4 α -17¹² (45%). These compounds were converted ¹³ into 4 β -18 and 4 α -18, respectively (70% each), by oxidation with 3,5-di-tert-butyl-1,2-benzoquinone (THF, 0°C, 18 h) and subsequent hydrolysis (oxalic acid-H₂O-THF, 0°C, 21 h).

First, a model experiment using $4\alpha - 12$ of the unnatural configuration was carried out. Reaction of 4α -18 with lithium salt of triethyl phosphonoacetate anion (THF, -20°C, 15 min) and subsequent separation of the products by silica gel chromatography yielded \underline{Z} -4 α -19 (30%) and $E-4\alpha-19$ (45%), the geometries being assigned based on the chemical shifts (CDCl₂) of relevant proton signals at δ 5.83 and δ 6.48, respectively. Conversions of the butenyl groups of both \underline{Z} - and \underline{E} -isomers into the corresponding acetonides proceeded similarly to the case of $\underline{2b}$, giving $\underline{Z}-4\alpha-20$ (74%) and $\underline{E}-4\alpha-20$ (86%), respectively. While selective hydrogenation ¹⁴ of $E-4\alpha-20$ (H₂, 5% Pd on CaCO₃, AcOEt, then back-esterification with Ph₂CN₂) yielded an inseparable mixture (5:1) of 3β , 4α - and 3α , 4α -21 (97%), that of Z-4\alpha-20 exclusively gave 3α , 4α -21 (87%). The mixture of 3β , 4α - and 3α , 4α -21 was converted¹⁰ into the corresponding ylides (86%), from which 3β , 4α -ylide 22 was separated by silica gel chromatography. The deprotection of the acetonide group of 3β , 4α -22 was carried out as described above giving 3β , 4α -25 (95%). Similarly, 3α , 4α -25 was obtained (78%) from 3α , 4α -21 via 3α , 4α -22. Periodic acid oxidation of 3β , 4α - and 3α , 4α -25 and subsequent neutralization of the resulting aldehydes produced carbapenem esters having the unnatural configuration, 28^{16} (60%) and 29 (64%), 17 respectively. The stereochemistry of the C₆-side chain of both carbapenem esters was determined by comparison of their H and ¹³C nmr spectra.

After several unsuccessful attempts to remove reductively the benzhydryl groups of esters 16, 28, and 29 and even the p-nitrobenzyl group of 30, prepared similarly from 4β-18 via $3\alpha,4\beta-23$, we tried to synthesize a carbapenem phthalidyl ester, which might be easily hydrolyzed by action of esterases existing in blood. Thus, carbapenem 31 was prepared from 4β-18 via 3β,4β-24 by the sequence of reactions used for converting $3\alpha,4\alpha-21$ into 29. The phthalidyl ester 31 exhibited only moderate in vitro antibacterial activity¹⁸ with horse blood serum, although interesting antibacterial activity of sodium C₂-unsubstituted carbapenem carboxylates has been reported recently. ^{3a, 3b}

REFERENCES

- 1. Part 15: Hamashima et al., to be published.
- D. B. R. Johnston, S. M. Schmitt, F. A. Bouffard, and B. G. Christensen, J. <u>Am. Chem. Soc</u>. <u>100</u>, 313 (1978).
- a) L. D. Cama and B. G. Christensen, <u>J. Am. Chem. Soc. 100</u>, 8006 (1978); b) D. H. Shih,
 J. Hannah, and B. G. Christensen, <u>J. Am. Chem. Soc. 100</u>, 8004 (1978); c) A. J. G. Baxter,

K. H. Dickinson, P. M. Roberts, T. C. Smale, and R. Southgate, J. <u>Chem. Soc.</u>, <u>Chem. Comm.</u> 236 (1979).

- 4. a) G. Albers-Schönberg, B. H. Arison, O. D. Hensens, J. Hirshfield, K. Hoogsteen, E.-A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R. W. Ratchliffe, E. Walton, L. J. Ruswinkle, R. B. Morin, and B. G. Christensen, J. <u>Am. Chem. Soc. 100</u>, 6491 (1978); b) A. G. Brown, D. F. Corbett, A. J. Eglington, and T. T. Howarth, J. <u>Chem. Soc., Chem. Comm. 523 (1977); c) D. F. Corbett, A. J. Eglington, and T. T. Howarth, J. Chem. Soc., Chem. Comm. 553 (1977); d) K. Okamura, S. Hirata, Y. Okumura, Y. Fukagawa, Y. Shimauchi, K. Kouno, T. Ishikura, and J. Lein, J. Antibiotics <u>31</u>, 480 (1978).
 </u>
- 5. Prepared by metal exchange⁶ followed by protonation (aq NH_4C1) of benzhydryl 6 α -iodo-penicillanate and subsequent chlorination of the resulting penicillanate.
- 6. F. DiNinno, T. R. Beattie, and B. G. Christensen, J. Org. Chem. 42, 2960 (1977).
- 7. Obtained as crystalline 4 β (mp 172-174°C, decomp) and non-crystalline 4 α -isomers from the tritylated products of the corresponding mixture of 3 β -amino-4-chloroazetidinones.⁸
- 8. M. Narisada, H. Onoue, and W. Nagata, <u>Heterocycles</u> 7, 839 (1977).
- Prepared by treatment of allyl, triphenyltins with phenyllithium: see, D. Seyferth and M. A. Weiner, J. Org. Chem. <u>26</u>, 4797 (1961).
- The original method was slightly modified: i) ozonolysis followed by immediate reduction (HOAc-Zn, 0°C); ii) chlorination (SOCl₂, Me₂NPh, 0°C); iii) ylide formation (Ph₃P, Me₂NPh, CH₂Cl₂, reflux, 1 h): see, S. Yamamoto, N. Haga, T. Aoki, S. Hayashi, H. Tanida, and W. Nagata, <u>Heterocycles 8</u>, 283 (1977).
- 11. <u>16</u>. IR \vee (CHCl₃) 1780, 1725 cm⁻¹. NMR (T-60, CDCl₃) & 2.67-3.0 (2H, m, C₁-H); 2.92 (1H, dd, <u>J</u> = 3 and 16 Hz, C₆₀-H); 3.47 (1H, dd, <u>J</u> = 6 and 16 Hz, C₆₀-H); 4.22 (1H, m, C₅-H); 6.50 (1H, t, <u>J</u> = 3 Hz, C₂-H).
- 12. The trans configuration was assigned based on the nmr spectrum of its N-phenylacetyl derivative: NMR (CDCl₃) δ 3.82 (1H, dt, <u>J</u> = 2 and 6 Hz, C₃-H); 4.65 (1H, dd, <u>J</u> = 2 and 8 Hz, C₄-H).
- 13. E. J. Corey and K. Achiwa, J. Am. Chem. Soc. 91, 1429 (1969).
- 14. Analogous reductions of 6-exomethylene penicillins¹⁵ and dehydrothienamycin^{4a} took somewhat different stereochemical courses.
- a) J. C. Sheehan and Y. S. Lo, <u>J. Org. Chem. <u>38</u>, 3223 (1973); b) J. C. Sheehan, A. Buku,
 E. Chacko, T. J. Commons, Y. S. Lo, D. R. Ponzi, and W. C. Schwarzel, <u>J. Org. Chem. 42</u>, 4045 (1977).
 </u>
- 16. <u>28</u>. IR \vee (CHCl₃) 1775, 1720 cm⁻¹. NMR (100 M/C, CDCl₃) δ 2.55-3.03 (4H, m, C₁-H, C₈-H); 3.50 (1H, ddd, <u>J</u> = 3, 5, and 10 Hz, C₆-H); 4.04 (1H, dt, <u>J</u> = 3 and 9 Hz, C₅-H); 6.47 (1H, t, <u>J</u> - 3 Hz, C₂-H). C¹³ NMR (CDCl₃) δ 33.2 (C₁), 35.9 (C₈), 55.2 (C₆), 58.3 (C₅).
- 17. 29. IR \vee (CHCI₃) 1780, 1720 cm⁻¹. NMR (100 M/C, CDCI₃) & 2.42-2.95 (4H, m, C₁-H, C₈-H); 3.99 (1H, m, C₆-H); 4.44 (1H, dt, <u>J</u> = 6 and 9.5 Hz, C₅-H); 6.53 (1H, t, <u>J</u> = 3 Hz, C₂-H). C¹³ NMR (CDCI₃) & 29.9 (C₁), 31.3 (C₈), 48.6 (C₆), 55.5 (C₅). [α]_D²⁵ -38.8° (EtOH). CD (θ) (EtOH) 266 nm (-7730).
- 18. The assay for antibacterial activity of the ester was carried out through the courtesy of Dr. T. Yoshida of this laboratory.

(Received in Japan 27 June 1979)